
Beginner Fortran 90 tutorial

1 Basic program structure in Fortran

A very basic program in Fortran contains:

• The program statement (which tells the compiler where the program be-
gins)

• Variable declarations (which tells the compiler what variables will be used,
and what type they are)

• Instructions as to what to do

• An end statement (which tells the program where the program ends)

This looks something like the following example:

program nameofprogram

implicit none

integer :: i,j,k

real :: x,y,z

x = 3.61

y = cos(x)

z = x + y

i = 3

j = i**2

k = i - j

end program nameofprogram

Exercise 1: Write this little program up in a text editor, save the file as
myprogram.f90 then compile the code using the command:

gfortran myprogram.f90 -o myprog

If it returns any compiling error, try to read what the compiler says and correct
the error. If it returns no error, this means that the compiler successfully turned
the code into an executable called myprog. To run the code, type ./myprog at
the prompt. What happens when you do that?

1

FedericoCluni
Casella di testo
downloaded from https://people.ucsc.edu/~dlee79/2019/fall/am129_209/_downloads/19b82f919ae387db3090603199f2bd45/section1.pdf
6/10/2021

2 Outputting data

In the previous example, your code probably ran but has nothing to show for
it – it did not print out any results that you could look at. To let the code
actually print out what the result is, you have to tell it to do so.

There are several options for outputting the results:

• To print the results to the screen

• To print the results to a file

In both case, there are several ways of outputting the data, in normal text form,
in compressed form, etc. Here, we will just focus on small problems where the
data can be printed in text form.

To print something out, you have to use a write statement. This statement
usually looks like

write(X,Y) Z/

where Z is a list of things to print, X tells the code where to print Z, and
Y tells the code in what format to print Z. The most basic write statement
is write(*,*) Z, which tells the code to write Z in its default format to the
screen. For instance:
write(*,*) ’The value of x is ’,x,’ and the value of y is’, y

will write the sentence The value of x is, followed by the actual value of x, and
then will write and the value of y is followed by the value of y, to the screen.
Note the quotes around the sentences, and the commas separating each of the
elements of the list of objects to print.

Exercise 2: In the program above, write out (whichever way you want), the
values of i,j,k,x,y and z. Recompile the code, and execute is. Is the output
what you expected?

Alternatively, you may want to write this information into a file. To do so,
you first need to open the file, then write to the file, then close the file. At the
most basic level, this is done by the following commands:

open(n,file=filename)

write(n,*) Z

close(n)

where n is any integer of your choice (larger than, say, 10) that will refer specifi-
cally to the file from the open statement to the end statement, and filename is
the name of your file (defined as a string of characters, which should therefore
be written in quotes. As an example, we can write

open(10,file=’mydata.dat’)

write(10,*) ’The value of x is ’,x,’ and the value of y is’, y

2

close(10)

Exercise 3: In the program above, write all the data to a file instead of the
screen. Recompile the code, and execute is. Is the output what you expected?

3 Reading data

In many cases, you want to write a program that can be applicable to different
input data without having to recompile it each time. For instance, suppose that
we wish to take, as in the code above, a value of x, then takes its cosine, then
add the two together and print out the result. But instead of writing the value
of x in the code, we want to read it ”online”, from a prompt, or from a file. To
read information, the command is very similar to that of the write statements:
they usually take the form of read(X,Y) Z. For instance, to read the value of
x from a screen prompt, and then write it back to the screen, you could add the
following command to the code:

write(*,*) ’What is the value of x?’

read(*,*) x

write(*,*) ’x is equal to ’,x

Exercise 4: Modify the code above to prompt the user to input x and i.
Compile and run the code, and then run it on a few examples. Is the result
what you expect?

Instead, one may want to read the value of x and i from a file. Suppose you
create a data file called input.dat that contains x on the first line, and i on the
second line. To open the file and read the two values, simply add the following
section to the code:

open(11,file=’input.dat’)

read(11,*) x

read(11,*) i

close(11)

Note that the information in the file must match what the code expects (i.e.
it must contain a real number in the first line, and an integer number on the
second).

Exercise 5: Modify the code above to read x and i from a file instead of
the prompt. Compile and run the code. Is the result what you expect? Then
switch the two lines in the input file, and re-run the code. What happens then?

3

4 Do loops

Suppose you now want to create a code that repeats very similar (but not
necessarily identical) instructions many times. Examples of this would be, for
instance, to calculate successive numbers in the Fibonacci sequence, or to eval-
uate the same function f(x) for many different values of x. A good way of doing
this is through the use of do loops. A do loop repeats a set of instructions for a
set number of iterations, where the only thing that differs in each repeated set
is the value of the iteration number. The do loop structure is

do iter = startiter,enditer

instruction 1

instruction 2

...

enddo

Here iter is an integer that will be varied in increments of 1 from startiter to
enditer. The following program evaluates the first 10 numbers of a geometric
sequence:

program geometric

implicit none

integer :: iter

real :: a0, r, res

write(*,*) ’What is the value of a0?’

read(*,*) a0

write(*,*) ’What is the value of r?’

read(*,*) r

do iter=1,10

write(*,*) iter, a0

a0 = a0 * r

enddo

end program geometric

Exercise 6: Write, compile and run this code. Are the results what you expect?
How would you modify it to calculate the values of an arithmetic sequence? How
would you modify it to prompt the user to tell the code how many iterations
to run? How would you modify it to print the results to a file instead of the
screen? Do all of these modifications, run the code and compile it. Are the
results what you expect?

4

5 Functions

Functions in Fortran have the same purpose and act in very much the same way
as normal mathematical functions: they take in a number of arguments, and
return the quantity that is the result of applying the function to its arguments.
Note that the quantity returned can be of any different data types, and can
either be a number, a character, a vector, a matrix, etc...

There are three ways of writing a function: the latter can be embedded in
the original program (in which case, it can only be called from that original
program), it can be added after the original program, or it can be put in a
separate file (in which case different programs can appeal to the same function).

To understand the difference between the various cases, imagine that we want
to write a code that produces a file that can be plotted which contains in the
first column values of x in a given interval, and in the second column the corre-
sponding values of cos(x).

Example 1: This first example contains the function as part of the original
program:

program plotfunction

implicit none

integer :: i

real :: x

real, parameter :: xmin = 0.,xmax=10., a=-2.

open(10,file=’myplot.dat’)

do i = 1,100

x = xmin + xmax*(i-1.0)/(100.0-1.0)
write(10,*) x,f(x)

enddo

close(10)

contains

function f(x)

implicit none

real :: f,x

f = cos(x+a)

end function f

end program plotfunction

5

A few things to note here:

• xmin, xmas and a are defined as parameters of the original program. These
are variables that are not meant to ever be changed by any operation in
the program. Their values are forever fixed by the declaration statement.

• Note how we did not declare the type of f in the bulk of the calling
program. This is actually done within the function.

Exercise 7: Write, compile and run this code. Plot the results using gnuplot,
or any visualization routine of your choice. Is the result what you expect? Now
change the values of xmas, recompile and re-run the code. Look at the results:
are they what you expect. Do the same but this time change the value of a.
Are the results what you expect?

Example 2: We now consider the alternative program in which f(x) is ap-
pended in the same file after the end of the program. Your code should now
look like this:

program plotfunction

implicit none

integer :: i

real :: x

real, parameter :: xmin = 0.,xmax=10., a=-2.

open(10,file=’myplot.dat’)

do i = 1,100

x = xmin + xmax*(i-1.0)/(100.0-1.0)
write(10,*) x,f(x)

enddo

close(10)

end program plotfunction

function f(x)

implicit none

real :: f,x

f = cos(x+a)

end function f

Exercise 8: Modify your code from Exercise 7 to append f(x) at the end
of the original program, as shown above. Compile it. What happens? How
would you correct the problem ?

6

This example illustrates that when the function is written outside of the original
program

• The program needs to be notified what is the data type of the quantity
returned by the function (here, f)

• The function needs to be notified of the type of all the variables it contains
(here, f, x and a).

Exercise 9: Correct your code from Exercise 8 accordingly, until it compiles
correctly. Plot the results using gnuplot, or any visualization routine of your
choice. Is the result what you expect? Now change the values of xmas, recompile
and re-run the code. Look at the results: are they what you expect. Do the
same but this time change the value of a. Are the results what you expect?

In this example, the function f does not know what the value of a is. Be-
cause of this, it usually (but not always, that depends on the compiler) just sets
this unknown value to 0. To correct the problem a must also be passed as an
argument of the function.

Exercise 10: Correct your code from Exercise 9 accordingly. Run it a few
times with different values of a. Does it now behave as it should?

Example 3: Finally, you can also take the last example and put the function in
an entirely different file instead of appending to the end of the program. To do
so, simply copy and paste the function into a file called, say, fcosx.f90. To
compile the code with the program and the function in different files, simply
type: gfortran myplot.f90 fcosx.f90 -o myplot. The compiler will then
take any program and function that it finds in the two listed files and attempt
to link them to one-another. If successful, it will generate the executable called
myplot.

Exercise 11: Move the function to a separate file, recompile as suggested,
and re-run the program. Does it behave as expected?

The advantage of the last form is that you can now call the same function
from an entirely different program, simply by adding the file fcosx.f90 to the
list of files that the compiler of the new code must link.

6 Arrays

In Fortran on can easily construct and manipulate vectors, matrices, and higher-
dimensional arrays. The use of vectors/arrays is, at least superficially, very in-
tuitive. By default, the range of indices of a vector is between 1 and the vector
dimension (and similarly for matrices). So, in order to access the third compo-
nent of a vector v we write v(3), and to access the coefficient in the second line,

7

first column of a two-by-two matrix A, we simply write A(2,1).

Suppose for instance that we want to create two square matrices (one super-
diagonal and one sub-diagonal, for simplicity) and add them together. The
following program illustrates how one would declare, create, and add the matri-
ces.

program addmats

implicit none

integer, parameter :: dimmat = 3

real, dimension(dimmat,dimmat) :: a,b,c

integer :: i,j

! This creates the matrices.

a(1,2) = 2.0

do i=2,dimmat-1

a(i,i+1) = 2.0

b(i,i-1) = 1.0

enddo

b(dimmat,dimmat-1) = 1.0

! This adds the matrices a and b

do i=1,dimmat

do j=1,dimmat

c(i,j) = a(i,j)+b(i,j)

enddo

enddo

! This prints c

write(*,*) c

end program addmats

Note:

• The arrays were defined to be arrays through the declaration statement
dimension followed by the dimension of the array. This is one way of
doing it called ”static allocation”, in which the size of the array is pre-
determined right at the beginning of the program. This used to be the
old Fortran way of doing it, and is still a very useful method for simple
problems. Later on, we will learn about dynamic array allocation, in which
one can create arrays ”on the fly”.

• Note how comments have been added to the program to make it more
readable. This is done with the exclamation mark. Everything on the line
after the exclamation mark is ignored by the compiler.

8

Exercise 12: Write, compile and run this program. What do you notice?

The program as written has two issues: the first is that all the coefficients
of c end up written in a line, which is confusing, and second, some of them have
values that are clearly gibberish.

To understand and correct the first problem, note that the way that Fortran
actually stores a matrix is the column-major order, meaning that it stores, one
after the other, first all the elements of the first column of the matrix, then all
the elements of the next column, and so forth. So the matrix c, which should
be equal to

c = a + b =

0 2 0
0 0 2
0 0 0

 +

0 0 0
1 0 0
0 1 0

 =

0 2 0
1 0 2
0 1 0


in the program above, is stored and therefore is (or rather, should be) ”returned”
to the screen as 0 1 0 2 0 1 0 2 0. To print it out in a more readable form,
one can use what is called an ”implied do list” in the write statement (a nice
feature of modern Fortran):

do i=1,dimmat

write(*,*) (c(i,j), j=1,dimmat)

enddo

Exercise 13: Replace the relevant lines of code in the previous program by
these ones, re-compile and re-run it. Has this corrected the first problem?

Let’s now deal with the second issue. Clearly, some of the elements are re-
turned correctly, and some are not. The reason for this is that numbers in
Fortran are not necessarily zero upon starting the program!. One should never
assume that they are. To correct the problem, we then either have to zero the
matrices by hand just after entering the program, or, we can explicitly enter all
the coefficients of a and b, including all of the ones that should be zero.

Exercise 14: Correct the program above using either of the two methods
described. Recompile and re-run it. Does it now give the correct answer?

At this point, it is worth mentioning that there are actually much more ele-
gant ways of doing the same things, using intrinsic array manipulation routines
in Fortran. For instance, it is possible to multiply a matrix a by a scalar s

simply with the command s*a. It is also possible to add the matrices a and b

simply with the command a+b. This is often a much faster way of manipulating
arrays, since good compilers will optimize the array operations in a way that is
difficult/cumbersome to do by hand.

Exercise 15: Write a separate program that makes use of the scalar multi-

9

plication and matrix addition commands to do the same thing as before. Run
and compile it to check that it gives the same result as your original code. Now
crank up the dimension of the array dimmat to a very large value (10,000 or
more), comment out the parts where you write the result out to the screen,
recompile both codes, and run each of them by adding the command time in
front of your execute command. How long does it take for each of the two codes
to do the same thing.

As you can see, the intrinsic functions are significantly more efficient than writ-
ing out the commands by hand – so use them as much as possible. To understand
the origin of the difference, see course on High-Performance Computing.

Warning: Note that the compiler interprets these intrinsic commands as ap-
plying to the coefficients, not to the matrices. So the command a+b creates
the matrix whose coefficients are a(i,j) + b(i,j). This is fine, since this is
how matrix addition/subtraction works. However, the similar command a*b

will create the matrix whose coefficients are a(i,j)*b(i,j). This is not the
result of a normal matrix multiplication. Similarly the command a/b creates
the matrix whose coefficients are a(i,j)/b(i,j), which is not the result of a
matrix inversion of b followed by a multiplication with a.

To multiply two matrices, there is an intrinsic Fortran 90 function called matmul,
which simply works by writing c = matmul(a,b) (this creates the matrix c as
the matrix-product of a and b). No similar intrinsic function exists for matrix
inversions, although many Libraries exist that can be of help. See later for this.

7 Subroutines

Subroutines are essentially sub-programs. While functions are usually used to
perform rather simple operations (though this doesn’t need to be always true),
subroutines commonly have hundreds or thousands of lines. They do not have
to return an argument, as in the case of functions, but on the other hand they
can return many arguments if needed. The standard structure of the subroutine
is

subroutine nameofroutine(arg1,arg2,arg3,...,argn)

implicit none

declarations

instructions

end subroutine nameofroutine

Among the arguments of the routine, there could be input arguments, or out-

10

put arguments, or mixed ones (that is, arguments that provide the routine with
information on input, and are changed on output). As in the case of functions,
the routine can either be contained in the calling program, or written separately
(either in the same file, after the body of the program, or in a separate file). If
the routine is contained within the program, then it knows about any variable
that is being used by the calling program. If on the other hand the routine is
not contained in the program, then any variable it needs must be passed as an
argument. Remarkably, routines can also take other routines, or other functions
as arguments. This is very useful if we want to create, for instance, a routine
that uses the bisection method to find out if a user-supplied function has a zero
in a given interval.

Here is the code for the routine. It takes as argument the interval over which we
want to search for roots, the name of the function we want to test, the number
of iterations to perform, and the value of the solution returned, if it exists.

subroutine bisect(xmin,xmax,func,sol,iter,err)

implicit none

! On entry this routine must be provided with the interval [xmin,xmax]

! over which to search for a solution,

! the name of the function fund to search for

! and the number of iterations iter to apply.

! On exit this routine returns the solution in sol, and its error in err.

real :: xmin,xmax,sol,func

integer :: iter

real :: x1,x2,res,err

integer :: i

external func

x1=xmin

x2=xmax

! Check if there could be a unique solution in interval.

res=func(x1)*func(x2)

if(res.gt.0.0) then

write(*,*) ’There is either no solution or more than one solution in this interval.’

write(*,*) ’Try again with a different interval.’

endif

do i=1,iter

sol=(x1+x2)/2 ! Calculate the mid-point of the interval

res=func(sol)*func(x2)

if(res.gt.0.0) then

x2 = sol ! The solution is between x1 and sol, shrink x2

11

else

x1 = sol ! The solution is between sol and x2, increase x1

endif

enddo

sol = (x2+x1)/2.
err = (x2-x1)/2.

end subroutine bisect

Note the rather self-explanatory use of the if, then, else statements. Also
note the declaration of func as an external function. This is needed both in the
routine and in the calling program (see below) if func is passed as an argument
of the routine.

Suppose we now want to use this routine, with the function cosine created
and written out in the separate file fcosx.f90, we could use the driver program

program solbybisection

implicit none

real, parameter :: xmin=0.0, xmax=2.0

integer, parameter :: iter = 10

real :: sol,err,fcosx

external fcosx

call bisect(xmin,xmax,fcosx,sol,iter,err)

write(*,*) sol,err

end program solbybisection

Exercise 16: Create the three files containing the calling program, the func-
tion fcosx (if this wasn’t done earlier) and the subroutine. Compile them all
together, as shown earlier, and run the program. In this particular example, the
solution should be π/2. Is it? Try other functions and other intervals. Correct
the code as appropriate if things don’t go as expected.

12

