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Learning 
Objectives

• Obtain an understanding of 
fundamental principles and 
techniques of molecular 
dynamics;

• Learn how to extract 
thermodynamic properties from 
molecular dynamics simulations;

• Identify what class of problems 
can be tackled with molecular 
dynamics;

• Understand current problems of 
molecular dynamics simulations;



Literature

http://www.amazon.co.uk/Understanding-Molecular-Simulation-

Applications-Computational/dp/0122673514

http://www.amazon.co.uk/Computer-Simulation-Liquids-

Science-

Publications/dp/0198556454/ref=pd_sim_14_2?ie=UTF8&dpI

D=51Y61tsyY3L&dpSrc=sims&preST=_AC_UL160_SR108%

2C160_&refRID=134XY64QNG2KBJYY3BG1

http://www.amazon.co.uk/Statistical-

Mechanics-Molecular-Simulation-

Graduate/dp/0198525265



Overview

•t-dependent Schrödinger Equation

•Derivation of a Nuclear DynamicsFoundations

•Potential Energy Surface

•Force Models

Calculation of 
Interatomic 

Forces

•- Equation of motion & numerical solutions

•- Evaluation of thermodynamic properties

Molecular 
Dynamics 

Simulations

•Metadynamics

•Transition Path Sampling

Advanced 
Methods

•Water

•Reconstructive Phase TransitionsExamples





Bis-carbene with hTelo (pdb 2HY9)

50 ns trajectory

1fs timestep

Temp - 300K

Pressure - 1atm

Solvent – H2O (not shown)

Ion concentration – 0.15M KCl (not 

shown)



Free energy surface (FES) – bis carbene with hTelo
(pdb 2HY9)
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MD, Trajectory

Forces Potential



Definition:

In Molecular Dynamics, a trajectory is the 
path (positions) left beyond by a system as 
a function of time. It consist of a series of 
snapshots, which are instantaneous 
configurations of atoms.  



Molecular Dynamics - MD

Numerical method (statistical mechanics). 

Newton equation of motions, numerical integration (Ex. Verlet algorithm). 

Discrete number of particles (ensembles), finite time integration step.

Per particle (atom, rigid molecule), positions and velocities are available.
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Calculation of (instantaneous) temperature from kinetic energy:
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• Forces on atoms

• MD from Schrödinger Equation

• Calculation of the forces

• MD flavors (Classical, BO, CP, …)

• D. Marx, J. Hutter, Ab initio molecular dynamics: Theory and Implementation, Modern Methods and Algorithms of 
Quantum Chemistry, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 1, ISBN 
3-00-005618-1, pp. 301-449, 2000.



MD from Schrödinger Equation
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Equation of Motion (nuclei)

(reads as: MI x aI = FI)



Further Simplification

Ground state wave function

Ground state wave function  BO Approximation

Born Oppenheimer MD

„Clamped Nuclei“



Molecular Dynamics

t-dependent Schrödinger Eq.

Classical 

nuclear motion

Separation of 

nuclear and electronic 

degrees of freedom

Effective potential 

due to the electrons

Classical MD

Born-Oppenheimer MD

Car-Parrinello MD

{



Trajectory computation

Decouple Dynamics and Electronics

Compute global potential energy E0

& derive gradients (forces)

Collect trajectories 

on this potential energy surface



Approximation

• Electrons adiabatically follow nuclear
motion; 

• Nuclei evolve on a single BO potential 
energy surface (PES);

• The PES can be further approximated by
„simpler“, often 2-body pair potentials. 



BO Molecular Dynamics

• Solve the static (t-independent) SE at each step;

• Given set of positions at time t=t0;

• Minimum of ℋ𝑒 has to be reached at each step.
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Initial configuration, R

„Add“ electrons

BO

Compute forces

Compute  0

„Add“ electrons

Propagate
scf



Car-Parrinello MD

• Map the electronic & nuclear equation of motion 
into 2 classical equation of motions (classical also 
for the electrons)

• Use some ideas of Lagrangian mechanics

• Functional derivatives with respect to orbitals



Lagrangian Formulation
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Propagate orbitals as classical objects, 

with a mass and a temperature.



Equations of motions



Analogue

R



System with 2 degrees of freedom



Mass and Temperature

„Warm“ nuclei, „cold“ electrons:
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 2
physical temperature

„fake“ temperature

Electrons „follow“ nuclei  close to the BO pot surface

 ≈ 0



Conserved Quantitites





Comparison BO, CP



Classical „Limit“
• Often pair potentials (v2) will suffice;

• Electronic degrees of freedom are not explicitly present;

• Fitting approaches, nowadays neural networks/ML.



MD, Trajectory

Forces Potential



Potential Energy Surface

Energy(RC)

RC

A
B

C

Statement of the Problem
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Ehrenfest

BO

CP



Hellmann-Feynman Forces 

For complete basis sets!



Equation of 
motion in 
Cartesian 

coordinates
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• Equations of motion, 
Verlet algorithm;

• Forces (classical, AI);

• Periodic Boundary 
Conditions.



Newton
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Forces
Gravitational forces
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Forces-2
Harmonic oscillator

)/( dtdvmkx x

Setting k/m =1:

xdtdvx )/(

Of course, there is an analytical solution to this problem. However, we are here 

thinking in terms of a MD code. 

For t small, the time evolution of the system can be written:
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Velocity at  t+t :
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Along this line, we have an iterative process to calculate (time integrate) positions 

and velocities, given some forces.

Kinematics
Dynamics

𝑎𝑥 =
𝑑𝑣𝑥
𝑑𝑡

= −𝑥



Numerics: improving precision

Instead of taking v(t) and v(t+t), we can consider v(t+t/2):
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We need v(Δt/2, for t=t0.
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Example - 2 planets
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Description in the plane of gravitation:

Equations to be solved:
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Example – more (3) planets
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3-body problem

• PG Breen et al., „Newton vs the machine: solving the chaotic three-body problem 
using deep neural networks“ 



For n bodies…
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Impulse conservation
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 Action / Reaction



MD - A „Crash Course“

A simple, however quite “universal” MD program

Frenkel & Smit, p. 65



MD-Initialization

Initialization:

Prepare a simulation box (may correspond to a structure, a liquid, …)

Choose a temperature, distribute velocities on the particles:

A Maxwell-Boltzmann distribution may be used at this point.

Alternative:

Velocities can be randomly assigned

The temperature is calculated from the kinetic energy, and rescaled, if 
necessary.

( A M-B distribution will be restored on time propagating)

Conservation of the linear momentum, L=0.



Velocity distributions

Maxwell-Boltzmann distribution



Initialization - Algorithm

• Loop (i) over N particles:

– Place particles on a lattice, x(i)

– Assign velocities, v(i)

– vcm=vcm+v(i)  (velocity of center of mass)

– kin=kin+v(i)^2   (kin. energy)

• Done

– set v.c.m. = 0

– rescale velocities to T



MD-Equation of Motions
Verlet Algorithmus.
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Velocities are calculated from the position information
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Verlet Algorithm - Scheme



Verlet Algorithm - Steps

Given positions, velocities & forces….

new positions can be computed (t + δt).

Velocities at t+δt/2 are computed,…

and forces at t+δt.

Velocities are computed at full step,

And the system is advanced to the next time step.



Formulas
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Measurements, pair/radial distribution funtion



Trajectory



Measuring 
Properties

• Trajectories encode the time-
evolution of a system. To
extract properties, time-
averaging on configurations is
performed.

• Characterisation of:
– Liquid/solid/gas;

– Short/long distance correlations;

– Typical distances (can be
matched to expriments);

– Local order/bonds.



Measures from MD: g(r)

• Radial distribution function, g(r); 

• Local structure of fluids (but also solids, amorphous 
systems…);

• Measurable: neutron, X-ray scattering;

• Light-scattering on colloidal suspensions;

• Central meaning in theories of liquids;

• g(r): ratio between the average number density ρ(r) at a 
distance r from any given atom and the density at a distance r 
from an atom in an ideal gas at the same overall density;

• Deviation from g(r) from unity reflects correlations in the 
system under consideration.

Number density: number of particles/volume



g(r) - scheme

Reference

Particles within



g(r): form

Liquid Argon, 100K, 100 ps MD



g(r): form

First coordination shell Second coordination shell

vdW diameter ~3.4 Ang = σ

~ 2 x σ

Example of nonassociated liquid, whose intermolecular structure can be understood in 

terms of packing.



Question

• Why are peaks equally spaced (by sigma)? 

• What is the relationship to the underlying 
structure ?

• Similarly: what is the expected coordination 
number for this type of structures ? 



g(r): calculation

• General idea: 

– Collect distance distribution into a histogram and normalize.

• How this is done:

– Loop over all configurations of a trajectory (time averaging);

– Calculate all the minimum image separations (minimum image 

distances) of all pairs of atoms. Each pair contributes 2 to a 

histogram bin;

– Sort these into a histogram, where each bin has a width of δr, and 

extends from r to r+δr;

– Normalise.



Footnote: periodic images



PBC & Distances

L

L

“Interacting”

Footnote: minimum distance



Example: Ar @ 131 K

Simulation made with “AtomsInMotion” App, on a iPad



~ 3.4 Ang

~ 7 Ang



~ 3.4 Ang

~ 7 Ang



~ 3.4 Ang

~ 7 Ang



~ 3.4 Ang

~ 7 Ang



Normalisation

• Given a bin in the interval (r, r+δr), containing nHIS

pairs, then the average number whose distance 
lies in this interval is:

• N is the number of atoms, τRUN is the number of 
history steps (multiplied by Δt).

nAVERAGE = nHIS / (N ´tRUN )



Normalisation -2

• The average number of atoms in the same interval 
in an ideal gas at the same density ρ is:

• By definition, the radial distribution function is:

nideal =
4pr

3
(r +d r )3 - r 3éë ùû

g(r +
1

2
d r) = nAVERAGE / nideal



g(r) form: 

Hydrogen



Gas/liquid/solid

http://www.matdl.org/matdlwiki/index.php/softmatter:Radial_Distribution_Function



Questions

• When do we expect g(r) to deviate from 1 ?

• At larger distances, what is the expected value of g(r) ? 
(Hint: look at the definition, or reason on 
correlation/interaction between particle positions).

• Can we get information about particle mobility from g(r) ? 
(Hint: think about peak separation – what does it mean if 
peaks are fully separated, what does it imply if there is 
partial/substantial overlap?).



Strong intermolecular interaction

Depending on the type of intermolecular interaction, g(r) may contain 

additional features. 

In the presence of hydrogen bonds, for example, mutual molecular 

orientations are rather fixed, such that one characteristic distance can 

be expected.

On the next slide, the first peak corresponds to O-O vdW contacts, 

associated with O-H….O bonds. Structural details of water can be 

found on subsequent slides.

Water orientation is dictated by H-bonds, the structure of solid water, 

ice, is not completely washed out in liquid water.



g(x) of water (liquid)



Coordination number from  g(x)

n(x) = 4pr x2

0

r

ò g(x)dx
Number of neighbors within a distance r 

from a central atom =

Coordination sphere

For liquid water, this integrates to n(x) > 4.

n(x)



Crystal structure of water



First/Second Peak

~2.8 Å ~4.5 Å = 1.6 x 2.8 Å 

Question: where does the factor 1.6 come from ?



Ice: local structure

http://scitechdaily.com/first-structural-observations-liquid-water-temperatures-minus-51-degrees-fahrenheit/

Example of associated liquid, in which local order is invoked by bonds, resulting in 

structures different from packing-controlled (nonassociated) liquids. 



Questions:

• Based on local tetrahedral arrangement, where can the 
mean peak for g(r) [H-H] and g(r) [O-H] be expected ? 

• Where would the peak for intramolecular g(r) [H-H] be 
expected?

• Is the water structure a dense structure ? 

• What are the g(r) features that point to a liquid ? 

• On imposing pressure (at constant temperature), which 
will disrupt hydrogen bonds, do we expect the order 
(entropy) of water to decrease or increase ?



Weak(er) intermolecular interaction

For weaker (non H-bonded) intermolecular interactions, the mutual 

orientation of molecules is broader, and (in liquid/solids) dictated by 

the packing & by the alignment of molecules.

The g(r) will contain a first (main) peak, corresponding to the van 

der Waals diameter of the molecule of interest, plus a second peak 

(or shoulder), which results from the fact that molecules touch each 

other, and their orientation is not so restricted as in a situation of H-

bonded molecules. A broad area is normally delimited by those two 

peaks (peak overlap).

This is the case for diatomic molecules (liquid elements for 

example), or hydrocarbons. 



Structure of a liquid with diatomic 
molecules (packing of peanuts)

Intra-molecular distance

(bond length), L

Van der Waals 

diameter, σ



Question

• Predict the g(r) of liquid N2, including inter- and 
intramolecular distances. 



g(r) of ethane/propane
g(r)

r

r = σ

r = σ + L



There are two lengths in the system,  sigma 

and sigma + L.

Sigma is sharper and better defined, on the 

contrary, due to a more or less random 

orientation of molecules, there is a range of 

intermolecular distances between sigma 

and sigma + L.

g(r) appears therefore less rich of features 

and the orientation randomization  washes 

out any finer structuring.



The role of conformations

Conformations may affect g(r).

For hydrocarbons, for example, g(r)C-C will show a first 

sharp peak, corresponding to  a C-C bond distance.

A second peak is expected, corresponding to the 

distance between two terminal C atoms in C-C-C. There 

is only one distance for them.

Additionally, depending on the statistical weight of a 

conformation, additional peaks, more or less sharp, may 

appear. They result form C-C-C-C. Clearly, depending 

on the conformations, more than one peak can be 

expected.



Conformations of butane

Distance 1

Distance 2

Distance 3

Distance 4



Questions

How many distances ?

Which ones will be visible ?

How will different energies be reflected into the g(r) ?

Sketch the expected g(r) [C-C], 

focusing on intramolecular interactions.



Lyapunov Instability

  r (t) = f [r N (0), pN (0);t]

  r '(t) = f [r N (0), pN (0) + e;t]

Small perturbation ε on the momenta



Effects of the instability

)exp()(')()( ttrtrtr  

Long-time exponential divergence of initially close trajectories

)exp( maxmax t 

Max initial error for trajectory „vicinity“ in the time interval [0,tmax}, 

for the traj to stay within Δmax.



Example
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Trajectory vs. Timestep

• After a time Δt, the trajectories become 

essentially uncorrelated.



Energy Conservation



MD - Forces
classical MD simulations are based on a potential (force field), represented as a sum of 

pair potentials:

where U(inf)=0.
)()(
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Pairwise additivity, approximation. Such potentials are referred to as “non-bonding”
potentials.

Very common is the Lennard-Jones potential:

attractive for r < r0, repulsive for r > r0.

The minimum represents “equilibrium” between rep. and attractive terms

The attractive term is asymptotic to r-6.
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MD-Potential: LJ
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http://matdl.org/repository/eserv/matdl:324/web_a_LJ_liquid.jpg



Quantities in MD

• Conserved quantities

– T + V

– Momentum (linear, angular)

• (Time) Averaged Quantities

– Volume

– Structure

– Transport (diffusion, conduction)

• Sampled Quantities (see next lecture)

– Free energy



Kinetic + potential energy
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(also as a vector!)

(vertically falling object)

Rate of change of kinetic energy is

equal (and opposite in sign) to the rate

of change of potential energy







Forces - LJ
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Forces - Algorithm

• Loop (i); 1, N-1

– Loop(j); i+1, N

– dist=x(i)-x(j)

– (test periodic boundary conditions)

– r2=dist^2

– if (r2 < cutoff)

• r2i= 1/r2

• r6i=r2i^3

• force=48*r2i*r6i*(r6i-0.5)

• f(i)=f(i)+force*dist

• f(j)=f(j)-force*dist

• energy=energy+4*r6i*(r6i-1)-ecut

– Loop j done

• Loop i done



Infinite ?

Molecule/Cluster 3D Crystal





Periodic Images

Surround the 
simulation box 

by periodic 
images



Simulation of “infinite” systems

periodic boundary conditions

L

L



PBC

If (L-periodic) then

if (x <   -L/2) x = x + L

if (x >=  L/2) x = x – L

endif Efficient realization:

xi = mod(xi, L)



PBC & Distances

L

L

“Interacting”



PBC & Distances

If (L-periodic) then

dx = x(i) – x(j)

if (dx >     L/2) dx = dx  - L

if (dx <=  -L/2) dx = dx + L

endif
Efficient realization:

dx = x(i) – x(j)

dx = dx – nint(dx/L)*L 



Verlet List – The Idea

Construct a list of adjacent atoms at time t.

Update the list at each step.

Advantages:

many distance vectors can be

filtered out from the very 

beginning.

Shaded area: force field cutoff distance



Geometries - Boxes

2D, 3D



Slabs

Infinite surface

“Empty”



Molecules, Clusters

Time
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Charges, Force Field Models, More Properties, 
Machine Learning



SHORT-RANGE VS. 

LONG-RANGE interactions



Truncation

• Short-range vs. long-range interactions: r<rcut
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Valid for rapid decay of potential energy,

Implies g(r) ~ 1 for r > rc. 

What are te consequences of considering interactions within a given cutoff ? 

Tail term



Lennard-Jones - truncation
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Define a tail correction – its value may be sizable due to large atom number at large r values!



General truncation strategies

• Hard cutoff

• Shifted potential 
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Ewald Summantion

• Charged particles (ions, partial charges)

• Long-range Coulomb interactions

• O(N3/2), Ewald Summation

• Particle Mesh Ewald Summation (N logN) 

(1000-10.000 atoms)

• Point charges

• PBC



Ewald
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Point charges

Screening function,

Rapid decay of 

Electrostatic potential

qi

-qi

Screened point charges

Screening charges 

with opposite signs



Ewald, formula
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Reciprocal (Fourier) spacePeriodic sum of screening functions 

(Gaussians)

Electrostatic potential due to a charge qi

surrounded by a screening function (Gaussian)

With net charge -qj

erfc(a) = 1 – erf(a)

Constant correction term

(depend on charges, not on

Charge locations)

α, k=(kx, ky, kz) are parameters 
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Amber Potential
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Applications

Biological chemistry, proteins, macromolecules, also DNA



bhm (Born-Huggins-Meyer)
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Applications

Fixed charges, typically integer 
numbers corresponding to 

oxidation numbers

Ionic salts

Bulk 
calculations

Cluster 
calculations 

(also charged)

Solvation, 
Condensation 

(solvent)



Alkali halides

NaCl, KCl, ….



oxides

CaTiO3

BaTiO3

ZnO

GaN

…



Core-Shell Potential

Core

Shell

Polarization, anisotropic shapes

Example: Oxygen in Perovskites

Harmonic coupling

Applications: batteries, fuel cells, ferroelectrics,...

An atom is represented as a combination of a core and a 

shell, both bearing a charge, and coupled through a 

harmonic potential (a spring). 



Metal potential (EAM)
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Two body term Embedding Function

Superposition of atomic functions

(EAM: spherical symmetric)

Many-body potential

No charges, therefore no Ewald



Compound Classes:

Large (metallic) systems and alloys

Ni, Cu, Al, Fe, Pu

B, Ga

Ti, Zr

Bulk Structures and Surfaces

Typical Applications/Scenarios:

Nucleation

Domains

Mechanical properties

Shock-induced FT

Defects

Parameterization:

Empirical (based on properties)

DFT database
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Properties from Trajectories

„computer experiments“

• Access experimentally measurable quantities

from simulations;

• Average of (some function of) coordinates and

momenta of the system particles;

• Directly accessible quantities: T, p, Cv

• Local properties: pair-distributuion g(r) ;

• Not directly accessible: free energy (F,G), S.



P, T, Cv

 f
f
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TkB ,

2
degrees of freedom
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d is dimensionality of the system (2,3,…)
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Equation of state



Diffusion

• D is a macroscopic quantity;

• It can be related to (stepwise) microscopic 

displacements;

• A “time integration” of the Δr can be a way of 

assessing diffusion in MD simulations.
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Velocity autocorrelation function

Total elapsed time

Mean Squared Displacement 

r

p





The empowering 
role of 
machine learning

Some ideas & why ML is 

here to stay



Energy(RC)

RC

A
B

C

Statement of the Problem

Potential Energy Surface



Equation of Motion (nuclei)



Learning Potential Energy 

Surfaces

• High accuracy that is comparable to first principles 
methods, including high‐order many‐body effects,

• the ability to describe chemical reactions and arbitrary 
atomic configurations,

• simulation of large systems,
• a general applicability to all types of bonding and atomic 

interactions, from dispersion interactions via covalent 
bonds to metallic bonding,

• a strategy for systematic improvements, validation, and 
error control,

• a general automatic construction protocol,
• the absence of ad hoc approximations or system specific 

energy contributions which restrict the applicability to 
certain types of systems.

Requirements

J. Behler, Angew. Chem. Int. Ed. 56, 12828–12840 (2017).



Chartflow

Calculation of the dataset

Preparation/standardisation

Learn

Test, then produce

In case, reopen and refit

J. Behler, Angew. Chem. Int. Ed. 56, 12828–12840 (2017).



Neural Network 
Structure

Coordinates;

Local chemical environment (symmetry 

functions);

Atomic Neural Networks;

Energy as sum of atomic energies;

Map of periodic structures by means of local 

atomic environments.

Atomic energy additivity, but higher precision than force fields.



Contribution to the 
force on an atom

Force on red atom depends on orange 
atoms & yellow atoms, since the latter 
are within the chemical environment 
of orange atoms;

Radius to be considered is 2Rc;

Simplifications possible as 
contribution of yellow atoms may be 
small.

J. Behler, Angew. Chem. Int. Ed. 56, 12828–12840 (2017).



Advantages for MD

• MD relies on the computation of forces;

• High precision enforces smaller systems and shorter 

simulation times;

• DFT ensures portability;

• Fore fields are specific and do not cover many-body terms, 

also they may fail if configurations are unseen;

• ML allows for high precision for large systems!



Study of Phase Diagrams - Silicon

It needs a more efficient potential;

NN offers the best compromise 

between accuracy and performance 

(speed);

This has the advantage that phase 

diagrams can be systematically 

explored.

-



Quality of the fitting

NN potential dramatically 

improves on the quality of the 

fitting to DFT data.

Simpler potentials (tersoff) may 

miss on important features, and 

therefore introduce errors.



5

Ensembles, Thermostats, Case Studies (water)



• We need to establish a link 
between the time-evolution of a 
system and measurable 
macroscopic properties of a 
(many-body) system. 



Statistical Mechanics

Atoms, molecules

Interparticle interactions;

Microscopic laws, QM.

Ensemble (many particles)

Law(s) of the ensemble ?

What are the observable properties of a system, if their interparticle interaction is 

governed by microscopic laws (i.e. quantum mechanics?)



Statistical Mechanics

The microscopic state of a many-body quantal system is determined by the 

Schrödiger equation (SE):

H      =ih

With static solution:

H

The index v is the collection of quantum numbers, given by N multiplied by the

dimensionality, D : v = N x D .

Integration of the SE then provides the time evolution of the system, once the initial

state is specified (see also Lecture 1)


t

 

vvv E  

Classically, the mechanical state of a system is fully characterized by specifying

points in phase space:

Flow in this space is determined by time integrating of Newton’s equation of motion,

F = m x a, from an initial phase space point  a trajectory (see Lectures 1, 2).

)...;...(),( 11 NN

NN pprrpr 



Trajectory in state space
(phase state or Hilbert space)

-Initial state

-Prepared

-N, V, E,

a state



System preparation

• In preparing the system, a certain number of 
variables is chosen, like the number of particles N, 
the volume of the simulation box V, and the total 
energy of the system, E.

• This choice will define a surface in phase space, 
allowing to somehow reduce the large number of 
states that will be visited.

• This variable choice is summarised in the acronym 
NVE.



Trajectories in NVE phase space

• After some (long enough) time, the system will eventually 
visit all the microscopic states consistent with the 
constraints we have introduced to control the system. The 
final “measurement” will consist of a series of 
measurements on the system:





N

a

aobs G
N

G
1
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Ga corresponds to the ath measurement, 

performed during a vanishingly short period of time, such that the system 

can be in only one microscopic state.
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 in  is state times
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 Ensemble average

Ensemble: assembly of all possible microstates, 

consistent with macroscopic constraints.

Microcanonical, NVE, assembly of all states with fixed total 

energy E and size N. 

Canonical Ensemble, NVT, energy E can fluctuate (use of a 

thermostat, see below).

vGv
N

N
G

v

v
obs 

Probability or 

weight of state v



ergodicity

• Taken over a long period of time, the ensemble average and 
the time average are the same. 

• Dynamical systems that obey this property are said to be 
ergodic. 

• A system visits all possible states in time.

• Subdivision into subsystems, which are larger than the 
correlation length (subsystem uncorrelated): one 
instantaneous measure of the total macroscopic system is 
equivalent to many independent measurements of the 
macroscopic subsystems. 



Microcanonical ensemble & 
the foundation of thermodynamics

The basic idea: every possible microscopic state or

fluctuation does in fact occur, and observed

properties are in fact the averages from all the

microscopic states.

(i.e. we can measure equilibrium properties)

For an isolated system with total energy E, and

given size (V, N), all microscopic states are equally

likely at thermodynamic equilibrium.

Assumption about the behaviour of a many-body system:



= number of microscopic states with N and V, and E 

between E and E+E.
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Temperature is positive, therefore N,V,E is a monotonic Increasing function of E.

(continuum approximation, E levels closely spaced)

For states in the ensemble, 

outside the ensemble Pv=0

Microcanonical Ensemble

Definition of Entropy



Constant Temperature MD simulations

  

W( p) =
b

2pm

æ

èç
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3/ 2

exp -b p2 / (2m)é
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ù
û

k
B
T = m v

a

2

Temperature of a particle. 

Constant T is not equal to constant Ekin/particle!

Maxwell-Boltzmann (M-B) velocity distribution 

governs the probability W of a momentum p. 



Constant Temperature
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Instantaneous TK fluctuates!

Relative variance of kinetic energy

Second moment of W(p)

Fourth moment of W(p)



Andersen Thermostat

System

Bath Stochastic collisions

of frequency ζ 



• Introduce a heat bath, and a coupling of the system with the bath.

• At specific time intervals (frequency = ζ), the system is subject to stochastic

forces, which affect the energy of a system.

• In time, the system will evolve from constant energy state to constant energy

states.

• Energy changes of the particle momenta are controlled by a Maxwell-Boltzmann

(M-B) distribution.

• This ensures that all Boltzmann-accessible energies are visited and properly

weighted.

• Technically, the system is propogated according to Newton’s dynamic equations

only between single collision events, while the momenta reshuffling implements

a Monte Carlo move on the system. This corresponds to a Markov chain.

• Given enough time, the system evolves into an equilibirum distribution of

momenta (M-B profile).



MD with Andersen Thermostat

{rN(0),pN(0)}

Initialization

Select m particles with 

probability

Pα(Δt; ζ) = ζ x Δt

For a particle i of the m

particles, its new velocity 

will be drawn for a M-B 

distribution at 

temperature T (in 

practice, from a Gauss 

distribution)

Δt

{rN(t),pN(t)}



Possible Implementation

sigma = sqrt(temp)

do i=1, N

if(ranf() < ζ x Δt)

v(i) = gauss(sigma)

endif

enddo

ranf(): [0,1]  - random number generator

gauss(sigma): value from Gaussian distribution 

of std. deviation sigma



Probability distribution profile

= ζ

W(v) = 



Case Studies – Water

a) Liquid-solid (crystallisation);
b) solid-liquid & proton mobility at    

high pressure.



Water

Slope at triple point positive

Density of Ice < density of water.



Simulation of Water Crystallization by MD

• Thermalization at high Temp

• Quenching to lower T (230 K)

• Supercooled state

• Time evolution, const-T, const-p

• 512 molecules

• Observation

• Order Parameter





Inherent Structure

Evolution of 

potential energy

Samples of structures at 

10 ps intervals,



H-bonds Structure



Monitoring of PT progress



Local Structures



High pressure ice(s)





Ice: solid-liquid (VII)

• Determination of the melting line at high pressures;

• Straighforward MD possibly problematic, due to

superheating or undercooling effects;

• Large discrepancies between theory/experiment;

• Melting process as a molecular solid, or dissociation ?

• Which level of theory is necessary here ?

• Range: 10-50 GPa



Preparing the model

• Ice VII is described as 2 interpenetrating cubic
(diamond-like nets).

• Oxygen are places on a bcc lattice, hydrogen 
are disordered.

• Prepare the O on a bcc lattice, distribute H in 
a random manner, however:

– Use Monte Carlo moves to minimize the dipole, 
obey Pauling ice rules (two-in, two-out);



Interpenetrating networks

http://epinet.anu.edu.au/infinite_tiles/s2224_tree



Describing Ice VII & water

• Start simulation from the „pure“ phases. 

Prepare corresponding boxes, propagate in 

time at different temperatures and pressure, in 

cold-hot, or hot-cold runs;

• Trace some properties that may change as the

effect of pressure/temperature;

• A discontinuity is often the signature of a 

structural change. 



Lattice parameters of ice VII under p



Different O/H behavior

1,200 K 1,400 K

H
H



Simulation of melting/solidification

• Start from configurations obtained by simulating

at identical conditions water and ice;

• Prepare a simulation box with half ice and half 

water  phase coexistence;

• Two phase simulation „method“;

• Equilibrate, to achieve an interfacial structure;

• Propagate at different temperatures;

• Successively bisect the melting temperature



Phase diagram
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PT -> intersection of two planes



Phase diagram
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Clausius-Clapeyron Equation

In general, for solid-liquid PT Sl > Ss, Vl>Vs,



Two-phases simulations



Phase Diagram





Explicit MD 



WORKSHOP 1



SIESTA

• Linear-scaling DFT based on NAOs (Numerical 

Atomic Orbitals) 

• Main Reference: P. Ordejon, E. Artacho & J. M. Soler 

, Phys. Rev. B 53, R10441 (1996) J. M.Soler et al, J. 

Phys.: Condens. Matter 14, 2745 (2002) 

• Spanish Initiative for Electronic Structure Calculations with 
Thousands of Atoms



Scope

• BO (forces)

– Molecular Dynamics & Optimisation

• DFT – LDA/GGA (also LDA/GGA +U)

• Pseudopotentials

– No explicit treatment of core electrons – faster, 
however tricky…

• Numerical orbitals & numerical evaluation of 
matrix elements



MD, Trajectory

Forces Potential





Specialised functionals

Practical strategy, not perfect, successful for some system, would fail in others.

Rather a local correction than a non-local functional.







Basis - size

Comparison LCAO with PW –

from J M Soler, 2002 J. Phys.: Condens. Matter 14 2745



Location of the minimum

Si



Properties vs cutoff radius



Different basis size



Resolution

• Start with SZ

• Lower values of the numerical mesh (150-200 Ry)

• No k points if possible (gamma point calculations 
for large structures, critical if cell parameters are 
small)

• Fermi smearing (for metals, but may also help 
convergence)



What should be done (in principle)

• Prepare pseudopotential(s)

• Test pseudopotentials

• Optimize the basis

• Critical choice of XC functional(s)

• Calculate SZ, DZ, DZP (TZP ??)

• Compare with a full potential method (or PW 
method)

• Pedantic convergence test (mesh cutoff, k points, 
basis size)



What it is done (in practice)

• There are databases of pseudopotentials, and 
standard choices of the basis (also within SIESTA).

• SZ gives a good initial guess, it is also fast

• There are also good mesh cutoff values

• Normally some experience with a particular 
element helps

• A routine user would accumulate a “personal” 
database of pseudos & basis…





Amoeba

Nonlinear Optimisation

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-

computer-algorithms-in-systems-engineering-spring-2010/lecture-

notes/MIT1_204S10_lec22.pdf



non-linear algorithms

• Amoeba

– Nelder-Mead method

– Direct solution of non-linear optimisations problems

– No derivatives

– Variable/adaptable step size based on function value

– Simplest, most robust, slowest

– No assumprions about function needed, “universal”

• CG

– Requires function, first derivative (gradient)

– Step size adapts as algorithm advances 



Amoeba algorithm

• Requires function evaluation only

• Less efficient compared to derivative-based, but 
more robust

• Short, compact implementation

• Appropriate if derivative are difficult (or possibly 
inexact)

• “Crawls downhill with no assumptions about 
function”



Amoeba steps

• Definition of a n+1 dimensional simplex for n-
dimensional problem (a tetrahedron in 3D – 4 
vertices).

• Every vertex is a function value.

• Starting points can be guessed values or radom 
choices (random choice of parameters from which 
function value is calculated)

• Minimisation steps have a geometric mapping



Amoeba Steps



Simplex: geometric changes

• Move points where function is highest (reflection)

• Where/if function flat, expand, then reflect 
(change/adapt step)

• Outcome of each step:

– Contraction in some directions

– Overall contraction

• Termiantion: values at vertices within given 
threshold (“zero” volume) 


